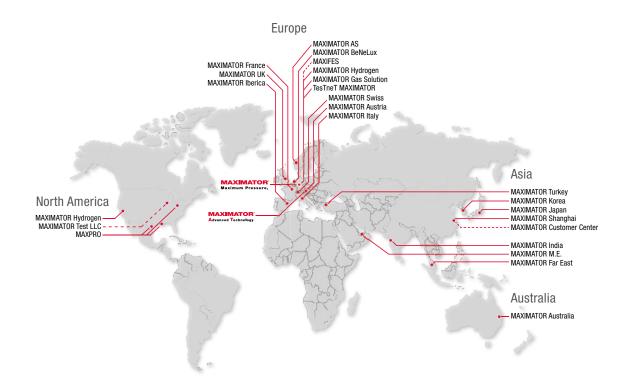


Flüssiggaspumpen LGP Serie


Inhalt / Über Maximator

Inhalt:	Seite:
Über MAXIMATOR	2
Anwendung und Funktion	3
Einsatz für entzündliche Fluide	4
Produktübersicht	5
MLGP Serie	6 – 7
SLGP Serie	8 – 9
GLGP Serie	10 – 11
Kältemittelübersicht	12 – 13
Weitere Leistungen	
- Hydraulik und Pneumatik	14
- Hochdrucktechnik und Prüftechnik	15

Überall an Ihrer Seite

Als weltweit führender Spezialist für Hochdrucktechnologie entwickelt MAXIMATOR leistungsfähige druckluftbetriebene Hochdruckpumpen und Gasverdichter für vielfältige Anwendungen und Einsatzgebiete. Wir unterstützen seit Jahrzehnten namhafte Unternehmen der Automobil- und Zulieferindustrie, der Chemie-, Kunststoff-, Ölund Gasindustrie.

Neben druckluftangetriebenen Flüssigkeitspumpen und Gasverdichtern produzieren wir Hochdrucktechnik-Zubehör wie Ventile, Verschraubungen, Druckschalter und weitere Bauteile. Darüber hinaus bieten wir umfangreiche Leistungen auf dem Gebiet der Hochdruckprüf- und Produktionstechnik. Unsere Geräte entsprechen der Druckgeräte-, Maschinen- und ATEX-Richtlinie und, auf Wunsch, den NACE-Spezifikationen. Wir befolgen strenge Qualitätsrichtlinien, die nach ISO 9001 zertifiziert sind. Um eine ständige Weiterentwicklung der Geräte zu gewährleisten, arbeiten wir eng mit unseren Kunden sowie Material- und Komponentenzulieferern zusammen. Die optimale Kundenbetreuung realisieren wir mit vier technischen Büros in Deutschland und weltweit mit qualifizierten Partnerfirmen. In unserer Fertigungsstätte Nordhausen arbeiten über 400 qualifizierte, hoch motivierte Mitarbeiter.

Anwendung und Funktion

Flüssiggaspumpen - Das Maximator-Konzept

Die Maximator LGP-Serie (Liquified Gas Pump) wurde für den Einsatz mit Kältemitteln entwickelt. Konstruktiv basieren diese Pumpen auf der Wirkungsweise von Gasverdichtern in Kombination mit bewährter Hochdruckpumpentechnik. Hierbei wurde die Technik auf die Kompression von flüssigen und gasförmigen Fluiden optimiert, sodass die Pumpen der LGP-Serie beide Aggregatzustände komprimieren und fördern können.

Eine weitere Besonderheit dieser Serie liegt in der Eignung für die Kompression und Förderung von brennbaren Fluiden. Es wurde eine druckfeste Kapselung nach der DIN EN 60079-1 inkl. einer TÜV-Prüfung umgesetzt. Somit können die Pumpen der LGP-Serie für eine Vielzahl von Fluiden eingesetzt werden.

Ebenso sind die SLGP und GLGP Pumpen optional mit reduziertem Hub erhältlich. Das reduziert einerseits die Baugröße der Pumpe und wirkt sich andererseits hemmend auf mögliche Vereisungen am Antriebsteil aus. Sollte dennoch ein Phasenübergang erfolgen, können die Pumpen der Maximator LGP-Serie das Fluid auch in der Gasphase fördern, ohne dass die Funktionsfähigkeit beeinträchtigt wird.

Phasenübergänge

Problemlose Handhabbarkeit von auftretenden Phasenübergängen

Erhöhung der Verfügbarkeit

Fluid-resistente Werkstoffauswahl

Applikationsorientierung

Anwendungsoptimierte Technik zur Vermeidung von Vereisung oder Phasenübergängen

FX-7oner

Konstruktive Ausführung der Technik zum sicheren Betrieb in EX-Zonen

Schutz

Deflagrationsendsicherungen und druckfeste Kapselung für den Einsatz brennbarer Fluide

Vorteile der Maximator LGP-Serie:

- Betriebsdruckregelung über manuellen Druckregler oder pneumatisch angesteuertes Ventil in der Antriebsluftleitung
- Druckluftantrieb und konstruktive Anpassungen ermöglicht den Einsatz im explosionsgefährdeten Bereich
- Deflagrationsendsicherungen für den Einsatz brennbarer Fluide
- Einfacher Einbau und problemlose Handhabung der Geräte
- Geringer Wartungsbedarf durch betriebssichere, montagefreundliche Geräte
- Problemlose Handhabbarkeit von auftretenden Phasenübergängen
- Erhöhung der Verfügbarkeit durch Fluidresistente Werkstoffauswahl
- Anwendungsoptimierte Technik zur Vermeidung von Vereisung oder Phasenübergängen

Auswahl und Einsatz

Auswahl der richtigen Pumpe

Für die Auslegung und Auswahl von Pumpen sind folgende Parameter notwendig:

- » max. Betriebsdruck
- » Förderleistung
- » verfügbarer Luftantriebsdruck
- » Fluid, Fluidtemperatur
- » Umgebungstemperatur

- » Angaben zu Anforderungen hinsichtlich Baugröße, Gewicht , etc.
- » gewünschte Optionen und Dichtungswerkstoffe

Hinweis: Das Maximator Team übernimmt auf Wunsch die Auslegung und berät hinsichtlich der Auswahl. Für viele Anwendungsfälle bestehen besondere Anforderungen; eine Beratung durch erfahrene Maximator Mitarbeiter ist daher zu empfehlen.

Einsatz

Deflagrationsendsicherung

Gängige, klimafreundliche Kältemittel sind meist brennbar. Sollte sich ein brennbares Gemisch aus dem Kältemittel und Sauerstoff innerhalb der Pumpe bilden, kann es zur Entzündung kommen. Im Fall einer Leckage auf der Hochdruckseite könnte sich in der kombinierten Leckagebohrung, die eine Verbindung zum Luftantrieb hat, ein brennbares Gasgemisch bilden. Dieses kann im Falle einer Entzündung eine Explosion auslösen.

Die entstehende Flamme wird in der Volumendeflagrationsendsicherung jedoch sofort gestoppt, wodurch sich die thermische Energie nicht ausbreiten kann. Zudem ist der Raum der kombinierten Leckagebohrung nach DIN EN 60079-1 konstruiert und geprüft, sodass keine Flamme austreten kann. Es liegt eine druckfeste Kapselung gemäß der Gasgruppe IIB vor.

Die Pumpen dürfen mit entsprechenden Vorkehrungen in explosionsgefährdeten Bereichen betrieben werden und tragen eine ATEX-Kennzeichnung.

Varianten & Optionen*

FS – Flammschutz, siehe Deflagrationsendsicherung. Diese Option ist **nicht nachrüstbar** und muss daher bei der Bestellung mit angegeben werden.

RS – **R**educed **S**troke, reduzierter Hub. Das Hubvolumen der Pumpe halbiert sich.

Zweistufig (3-3, 5-5) – Das Fluid wird über zwei Druckstufen verdichtet.

FEC – **F**or **E**xtreme **C**ycling. Für den Antrieb mit trockener Druckluft oder Stickstoff.

LT – **L**ow **T**emperature. Die Fluidtemperatur kann bei bis zu -40°C liegen. Hierfür werden spezielle Dichtungswerkstoffe eingesetzt.

LTA – **L**ow **T**emperature **A**mbient. Die Fluid– und Umgebungstemperaturen können bei bis zu -40°C liegen. Hierfür werden spezielle Dichtungswerkstoffe eingesetzt.

SS - Stainless Steel. Medienberührte Bauteile aus Edelstahl

*Diese Optionen / Varianten sind **nicht nachrüstbar** und müssen daher bei der Bestellung mit angegeben werden.

Produktübersicht

Modell	Ausführung	Deflagrations- endsicherung*	Optionen	verfügbare Dichtungen**
MLGP 7-NBR	Standard	ohne		
SLGP 3-NBR	RS -3 -3-RS Standard	mit FS	LT LTA	NBR CR EPDM FFKM
GLGP 5-NBR	RS -5 -5-RS Standard	ohne	SS FEC	PTFE FKM HNBR

^{*} die Deflagrationsendsicherung kann nicht nachgerüstet werden

Hinweis: weitere technische Informationen sind auf den Produktdatenblättern hinterlegt.

Dichtungswerkstoffe

NBR – Nitrilkautschuk, gutes Kälte– und Verformungsverhalten bei -30°C bis 100°C, Fluidverträglichkeit: gering, elastisch

HNBR – hydrierter Nitrilkautschuk, gutes Temperaturverhalten bei -40°C bis 140°C, Fluidverträglichkeit: gering, abriebfest

EPDM – Ethylenpropylendien Kautschuk, gutes Temperaturverhalten bei -50°C bis 150°C, Fluidverträglichkeit: mittel, abriebfest

FKM – Fluorkautschuk, gutes Temperaturverhalten bei -25°C bis 200°C, Fluidverträglichkeit: hoch, elastisch, sehr gute Ozonbeständigkeit

FFKM – Perfluorkautschuk, gutes Temperaturverhalten bei -15°C bis 320°C, Fluidverträglichkeit: hoch, abriebfest

PTFE—Polytetrafluorethylen, gutes Temperaturverhalten bei -200°C bis 260°C, Fluidverträglichkeit: hoch, reibungsarm

Beispiele

SLGP 3-NBR-FS-RS-FEC

einstufige, doppeltwirkende Pumpe mit Deflagrationsendsicherung, reduziertem Hub und ${\sf FEC-Option}$.

GLGP 5-5-NBR-NPT-RS

zweistufige, doppeltwirkende Pumpe mit NPT-Gewinde-Anschlüssen, reduziertem Hub und ohne Deflagrationsendsicherung.

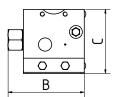
GLGP 5-EPDM-FS

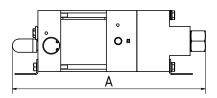
einstufige, doppeltwirkende Pumpe mit EPDM-Dichtungen und Deflagrationsendsicherung.

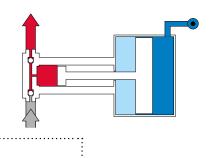
^{**}Der im Standard verwendete Dichtungswerkstoff ist dem Produktnamen zu entnehmen.

MLGP-Serie

MLGP 7-NBR


- » Einfachwirkend
- » Mit einem Luftantriebskolben
- » Betriebsdrücke bis 70 bar (1.015 psi)
- » Formel für den Gasauslassdruck:


$$p_B = i * p_L$$


Die kompakten und robusten Pumpen der MLGP-Serie sind in unterschiedlichsten Optionen erhältlich um ein breites Spektrum an Kühlmitteln zu verdichten.

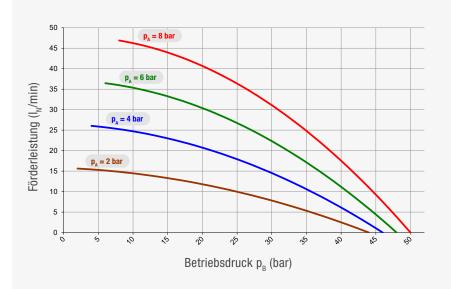
- Material: Pumpenköpfe aus Aluminium, Kolben und Ventile aus Edelstahl und Dichtungen im Standard aus NBR
- Standardausführung mit Einlass unten
- Für Luftantriebsdrücke von 1 bis 10 bar (14,5 bis 145 psi)

Optionen für MLGP 7

- Dichtungsversionen, z.B. FKM, HNBR, EPDM, CR für bestimmte Fluide -Bestellcode: siehe Fluidbeständigkeitsliste
- Vom Standard abweichende Anschlüsse, z.B. mit NPT-Gewinde
 Bestellcode: MLGP7 - NPT
- » FEC-Option: für den Antrieb mit trockener Druckluft oder Stickstoff Bestellcode: MLGP7 - FEC

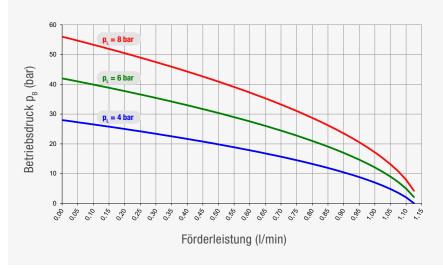
ungsve		tz- Hubvolumen er- **		Betriebsdruck p _B ***		min. Eingangs- druck p _A		Anschlüsse		Maße in mm			Ge- wicht	
	hältnis i*	cm³	cu.inch	bar	psi	bar	psi	Luftan- trieb p _L	Ein- lass A	Aus- lass B	A	В	C	kg
MGLP 7	1:7	15	0,92	70	1015	-0,8	-11,6	G 3/8	G 1/4	G 1/4	254	100	84	3,3

- Übersetzungsverhältnis aus Antriebsfläche Luftkolben zur Abtriebsfläche Hochdruckkolben.
- ** Rechnerisch ermitteltes Hubvolumen.
- *** Maximal zulässiger statischer Betriebsdruck.


- LT-Option: Tief-Temperatur Modifikation für den Hochdruckteil (-40°C bis 60°C)
 Bestellcode: MLGP7 - LT
- LTA-Option:Tief-Temperatur Modifikation für den Hochdruck- und Luftantriebsteil (-40°C bis 60°C)

Bestellcode: MLGP7 - LTA

Weitere Optionen auf Anfrage lieferbar.


Leistungsdiagramm für gasförmigen Zustand

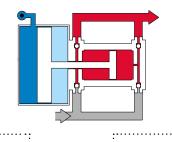
Antriebsdruck $p_L = 6$ bar, Prüffluid Stickstoff, $p_A = Gasvordruck$

Leistungsdiagramm für flüssigen Zustand

Antriebsdruck = p_L Prüffluid Wasser-Öl-Emulsion ca. 1 - 10 cst

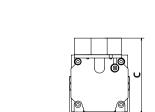
SLGP-Serie

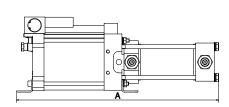
SLGP 3-NBR


- » Doppeltwirkend
- » Einstufig
- » Mit einem Luftantriebskolben
- » Betriebsdrücke bis 52 bar (755 psi)
- » Formel für den Gasauslassdruck:

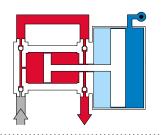
$$p_B = i * p_L + p_A$$

Die kompakten und robusten Pumpen der SLGP-Serie sind in unterschiedlichsten Optionen erhältlich um ein breites Spektrum an Kühlmitteln zu verdichten.


- Material: Pumpenköpfe aus Aluminium, Kolben und Ventile aus Edelstahl und Dichtungen im Standard aus NBR
- Standardausführung mit Einlass seitlich
- Für Luftantriebsdrücke von 1 bis 10 bar (14,5 bis 145 psi)



Optionen für SLGP 3(-3)


- Dichtungsversionen, z.B. NBR, HNBR, EPDM, CR für bestimmte Fluide -Bestellcode: siehe Fluidbeständigkeitsliste
- Vom Standard abweichende Anschlüsse, z.B. mit NPT-Gewinde
 Bestellcode: SLGP3 - NPT
- **FS-Option**: druckfeste Kapselung durch Deflagrationsendsicherung
- RS-Option: reduzierter Hub



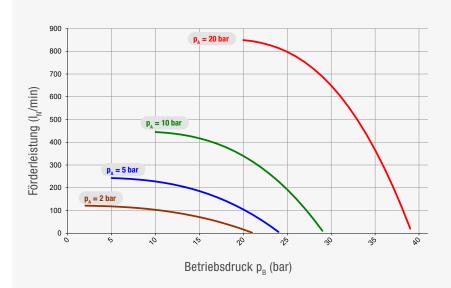
Тур	Übersetz- ungsver-	Hubv **	olumen	Betrie p _B ***	bsdruck	min. Ei druck		Anschli	isse		Maße in mm			Ge- wicht
	hältnis i*							Luftan-	Ein-	Aus-				kg
		cm³	cu.inch	bar	psi	bar	psi	trieb p _L	lass A	lass B	A	В	C	
SLGP 3	1:3,2	746	45,52	52	755	-0,8	-11,6	G 1/2	G 1/2	G 1/2	478	141	178	10,7
SLGP 3-RS	1:3,2	373	22,76	52	755	-0,8	-11,6	G 1/2	G 1/2	G 1/2	382	141	178	10
SLGP 3-3	1:3,2/1:3,4	373	45,52	52	755	-0,7	-10,2	G 1/2	G 1/2	G 1/2	478	233	178	11,1
SLGP 3-3-RS	1:3,2/1:3,4	186	22,76	52	755	-0,7	-10,2	G 1/2	G 1/2	G 1/2	382	233	178	10,4

- Übersetzungsverhältnis aus Antriebsfläche Luftkolben zur Abtriebsfläche Hochdruckkolben.
- ** Rechnerisch ermitteltes Hubvolumen.
- *** Maximal zulässiger statischer Betriebsdruck.

• LT-Option:Tief-Temperatur Modifikation für den Hochdruckteil (-40°C bis 60°C) Bestellcode: SLGP3 - LT

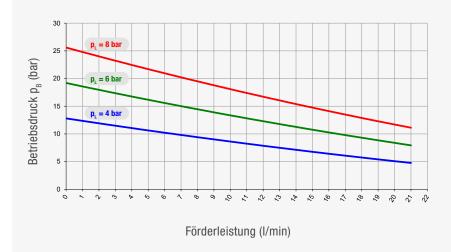
 LTA-Option:Tief-Temperatur Modifi -kation für den Hochdruck- und Luftantriebsteil (-40°C bis 60°C)
 Bestellcode: SLGP3 - LTA

Weitere Optionen auf Anfrage lieferbar.


SLGP 3-3-NBR

- » Doppeltwirkend
- » Zweistufig
- » Mit einem Luftantriebskolben
- » Betriebsdrücke bis 52 bar (755 psi)
- » Formel für den Gasauslassdruck:

 $p_{R} = 3.4 * p_{I} + 3.4/3.2 * p_{A}$


Leistungsdiagramm SLGP 3* für gasförmigen Zustand

Antriebsdruck $p_L = 6$ bar, Prüffluid Stickstoff, $p_A = Gasvordruck$

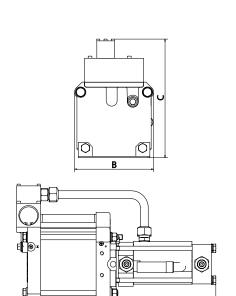
Leistungsdiagramm SLGP 3* für flüssigen Zustand

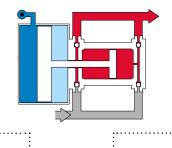
Antriebsdruck = p_1 , Prüffluid Wasser-Öl-Emulsion ca. 1 - 10 cst

^{*} Ausführliche Leistungsdiagramme der SLGP Serie sind den Datenblättern der Produkte zu entnehmen.

GLGP-Serie

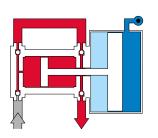
GLGP 5-NBR


- » Doppeltwirkend
- » Einstufig
- » Mit einem Luftantriebskolben
- » Betriebsdrücke bis 90 bar (1.305 psi)
- » Formel für den Gasauslassdruck:


$$p_B = i * p_L + p_A$$

Die kompakten und robusten Pumpen der GLGP-Serie sind in unterschiedlichsten Optionen erhältlich um ein breites Spektrum an Kühlmitteln zu verdichten.

- Material: Pumpenköpfe aus Aluminium, Kolben und Ventile aus Edelstahl und Dichtungen im Standard aus NBR
- Standardausführung mit Einlass seitlich
- Für Luftantriebsdrücke von 1 bis 10 bar (14,5 bis 145 psi)



Optionen für GLGP 5(-5)

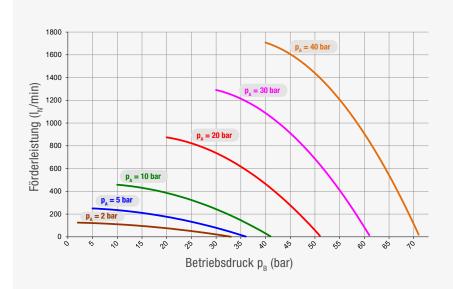
- Dichtungsversionen, z.B. NBR, HNBR, EPDM, CR für bestimmte Fluide -Bestellcode: siehe Fluidbeständigkeitsliste
- Vom Standard abweichende Anschlüsse,
 z.B. mit NPT-Gewinde
 Bestellcode: GLGP 5 NPT
- **FS-Option**: druckfeste Kapselung durch Deflagrationsendsicherung
- RS-Option: reduzierter Hub

Тур	Übersetz- ungsver-	Hubv **	olumen	Betrie p _B ***	Betriebsdruck min. Eingang p _B *** druck p _A			Anschlüsse			Maße in mm			Ge- wicht
	hältnis i*	cm³	cu.inch	bar	psi	bar	psi	Luftan- trieb p.	Ein- lass A	Aus- lass B	A	В	С	kg
GLGP 5	1:5,2	746	45,52	90	1035	-0,8	-11,6	G 3/4	G 1/2	G 1/2	466	181	272	15,1
GLGP 5-RS	1:5,2	373	22,76	90	1035	-0,8	-11,6	G 3/4	G 1/2	G 1/2	370	193	272	14,2
GLGP 5-5	1:5,2/1:5,6	373	45,52	90	1035	-0,9	-13,1	G 3/4	G 1/2	G 1/2	466	253	272	15,4
GLGP 5-5-RS	1:5,2/1:5,6	186	22,76	90	1035	-0,9	-13,1	G 3/4	G 1/2	G 1/2	370	265	272	14,6

- * Übersetzungsverhältnis aus Antriebsfläche Luftkolben zur Abtriebsfläche Hochdruckkolben.
- ** Rechnerisch ermitteltes Hubvolumen.
- *** Maximal zulässiger statischer Betriebsdruck.

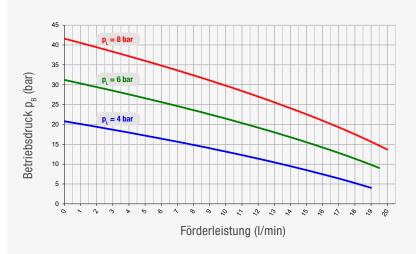
GLGP 5-5-NBR

- » Doppeltwirkend
- » Zweistufig
- » Mit einem Luftantriebskolben
- » Betriebsdrücke bis 90 bar (1.305 psi)
- » Formel für den Gasauslassdruck:


 $p_{R} = 5.6 * p_{I} + 5.6/5.2 * p_{A}$

- FEC-Option: für den Antrieb mit trockener Druckluft oder Stickstoff Bestellcode: GLGP 5 - FEC
- LT-Option:Tief-Temperatur Modifikation für den Hochdruckteil (-40°C bis 60°C)
 Bestellcode: GLGP 5 - LT
- LTA-Option:Tief-Temperatur Modifi
 -kation für den Hochdruck- und
 Luftantriebsteil (-40°C bis 60°C)
 Bestellcode: GLGP 5 LTA

Weitere Optionen auf Anfrage lieferbar.


Leistungsdiagramm GLGP 5* für gasförmigen Zustand

Antriebsdruck $p_{_{\rm I}}=6$ bar, Prüffluid Stickstoff, $p_{_{\rm A}}=$ Gasvordruck

Leistungsdiagramm GLGP 5* für flüssigen Zustand

Antriebsdruck = p_1 , Prüffluid Wasser-Öl-Emulsion ca. 1 - 10 cst

^{*} Ausführliche Leistungsdiagramme der GLGP Serie sind den Datenblättern der Produkte zu entnehmen.

Gängige Kältemittel

Kältemittel	Fluid	GWP	Sicherheits- klasse	Hinweise und Dichtungsempfehlu	ing
R32	Difluormethan	675	A2L		EPDM + PTFE + NBR + FFKM
R50	Methan	25	A2		siehe Betriebsanleitung
R170	Ethan	6	A3		siehe Betriebsanleitung
R290	Propan	3	A3		siehe Betriebsanleitung
R454a/b	Gemisch R32 + R1234yf	239	A2L		CRL+ HNBR
R513a	Tetrafluorpropen/- ethangemisch	631	A1	Reagiert mit Aluminium; fast alle Verdichter für R134a sind jedoch für R513a freigegeben	EPDM + PTFE + HNBR
R600/A	Butan/Isobutan	3	A3		EPDM + PTFE
R718	Wasser	0	A1	Durch Maximator Pumpen abgedeckt	EPDM + PTFE
R744	Kohlenstoffdioxid	1	A1	Hohe Betriebsdrücke nötig; teilweise Überführung in Hochdruckbehälter nötig/ Notkühlung; durch DLE abgedeckt	NBR + PTFE
R1150	Ethen	0	A3		siehe Betriebsanleitung
R1234yf	Tetrafluorpropen	4	A2L		EPDM + PTFE (HNBR) + FFKM
R1234ze	Tetra-fluor-propen	7	A2L		EPDM + PTFE (HNBR) + FFKM
R1270	Propen/ Propylen	3	A3	Höhere Drucklagen + Druckgas-Temperaturen	FKM/ FFKM + PTFE
R1336mzz	Hexafluorbuten	2	A1		NBR + FFKM

F-Gase Verordnung der EU

Kältemittel	GWP	Sicherheitsgruppe	Hinweise und Dichtungsempfehlung
FCKW HFCKW	>4750 >1182		bitte wenden Sie sich an das Werk
R11	400	A1	NBR + PTFE
R22	1810	A1	bitte wenden Sie sich an das Werk
R23	14800	A1	EPDM + PTFE
R116	9200	A2	bitte wenden Sie sich an das Werk
R134a	1430	A1	EPDM + PTFE (HNBR)
R404a	3922	A1	bitte wenden Sie sich an das Werk
R407C	1744	A1	bitte wenden Sie sich an das Werk
R407F	1825	A1	bitte wenden Sie sich an das Werk
R410a	2088	A1	EPDM + PTFE
R438A	2265	A1	bitte wenden Sie sich an das Werk
R442D	2729	A1	bitte wenden Sie sich an das Werk
R448A	1386	A1	EPDM + PTFE
R449A	1396	A1	EPDM + PTFE
R452A	2140	A1	EPDM + PTFE
R507	3990	A1	EPDM + PTFE

Weitere Leistungen » Hydraulik und Pneumatik

Hochdruckpumpen

- Druckerzeugung von bis zu 7.000 bar
- Druckluftbetriebene Hochdruckpumpen arbeiten nach dem Prinzip eines Druckübersetzers
- Durch Druckluftantrieb für den Einsatz im EX-geschützten Bereich besonders geeignet
- Kein Energieverbrauch bei langen Druckhaltezeiten

Gasverdichter

- Ölfreies Verdichten von technischen Gasen und Druckluft bis zu 2.400 bar
- Druckluftbetriebene Kolbenverdichter arbeiten nach dem Prinzip eines Druckübersetzers
- Durch Druckluftantrieb für den Einsatz im EX-geschützten Bereich besonders geeignet
- Kein Energieverbrauch bei langen Druckhaltezeiten

Ventile, Fittings und Rohre

- Konstruktion und Produktion ausschließlich in Deutschland
- Umfangreiche Produktpalette (Hochdruckventile, Fittinge, Rohre, Rückschlagventile, Leitungsfilter, Adapter)
- Kurze Lieferzeiten dank hochflexibler Fertigung
- Zertifikate für alle Produkte verfügbar (Herstellererklärung, ATEX und weitere)
- MAXIMATOR VFT-ToolBoXX Typ CTTB gibt es in drei Grundvarianten:
 - 1. Komplett: für die Rohrgrößen 1/4", 3/8" und 9/16" der Medium, High und Ultra High Pressure Serie.
- 2. Medium Pressure: für die Rohrgrößen 1/4", 3/8" und 9/16" der Medium Pressure
- 3. High Pressure: für die Rohrgrößen 1/4", 3/8" und 9/16" der High und Ultra High Pressure Serie

Rental Units für Flüssigkeiten

Maximator-Power Packs Liquid sind für viele Anwendungen in Maschinenbau und Industrie einsetzbar. Sie erzeugen betriebssicher und effektiv hydraulische Drücke bis 4.000 bar.

- kein elektrischer Anschluss zum Betreiben notwendig
- alle Power Packs für den Einsatz in explosionsgefährdeten Bereichen geeignet
- umfangreiches Zubehör für Adaptierung und Druckmessung
- Bedienpanels mit Schaltlogik sorgen für sichere Bedienung

Rental Units für Gase

Maximator Power Packs Gas sind kompakte Kompressorstationen zur einfachen und sicheren Verdichtung von technischen Gasen auf bis zu 2.100 bar.

- ölfreie Gasverdichtung ohne Verunreinigung des zu verdichtenden Gases
- einfache Regelung des Betriebsdrucks durch Einstellen des Antriebsdrucks
- teilweise für den Einsatz in explosionsgefährdeten Bereichen geeignet

Prüf- und Produktionsanlagen, Gasbefüllanlagen

- Autofrettage Maschinen (20.000 bar)
- Dichtheits- und Berstdruckprüftechnik
- Gasbefüllanlagen für Wasserstoffanwendungen
- Aufweitanlagen

- Impulsdruckprüfanlagen (6.000 bar)
- Hochdruck-Umformungsanlagen
- Prüftechnik für Kunststoffkomponenten
- Prüftechnik für hochdrucktragende Komponenten der Wasserstoffmobilität

Überall an Ihrer Seite

Mit unseren internationalen Partnerunternehmen stehen Ihnen immer erfahrene Fachleute der Hochdrucktechnik zur Verfügung. Detaillierte Kontaktinformationen über unsere internationalen Partner haben wir für Sie auf unserer Website unter: www.maximator.de/vertrieb+weltweit zusammengestellt.

MAXIMATOR GmbH

Lange Straße 6, 99734 Nordhausen, Telefon +49 (0) 3631 9533-0, Telefax +49 (0) 3631 9533-5010 info@maximator.de

» Besuchen Sie auch unsere Website: www.maximator.de